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A light-emitting liquid crystal containing p-terphenyl and a
pentylsilyl group was synthesized, and its thermodynamic and
photochemical properties were studied. The pentylsilyl group
was found to work as a flexible side chain of a thermotropic
liquid crystal. This compound shows intense blue fluorescence
in hexane and in the liquid crystal state.

Liquid crystal molecules consist of rigid central cores and
flexible side chains.1 As rigid central cores, aromatic rings have
usually been used, and as flexible side chains, alkoxy, acyloxy,
carboalkoxy, alkylthio, and alkyl groups have been used.
Recently, organosilicon liquid crystals have been reported,
including oligosilanes,2 polysilanes,3 and bicyclo[2.2.2]octa-
silane derivatives.4 Also, lyotropic liquid crystalline polymers
containing trimethylsilyl and long alkyldimethylsilyl groups
have recently been reported.5

In the course of our studies on silyl-substituted aromatic
compounds, we found that silyl groups increase extinction
coefficients of UV absorption bands and fluorescence or
phosphorescence quantum yields of aromatic compounds.6 We
also reported that silyl groups improve photochemical properties
of porphyrin dyes for photodynamic therapy7 and dye-sensitized
solar cells.8 We report herein the first example that an alkylsilyl
group can be used as a flexible side chain of a thermotropic
liquid crystal containing p-terphenyl.9 As silyl groups improve
fluorescence quantum yields of aromatic compounds, pentylsi-
lyl-substituted p-terphenyl can be used as a highly effective
light-emitting liquid crystal.

The synthetic route is described in Scheme 1. The Suzuki­
Miyaura coupling of 4-bromo-4¤-hexyloxybiphenyl and 4-
(trimethylsilyl)phenylboronic acid gave 4-hexyloxy-4¤¤-trimeth-
ylsilyl-p-terphenyl (1). Compound 1 was iodinated with iodine
monochloride to give 4-hexyloxy-4¤¤-iodo-p-terphenyl (2). The
reaction of 2 and dichloropentylsilane in the presence of
magnesium followed by reduction with lithium aluminum
hydride gave 4-hexyloxy-4¤¤-pentylsilyl-p-terphenyl (3).10 For
comparison, 4-hexyloxy-p-terphenyl (4) was synthesized by
lithiation of 2 with butyllithium and hydrolysis with methanol.
Also, 4-hexyloxy-4¤¤-pentyloxy-p-terphenyl (5) was synthesized
by the Suzuki­Miyaura coupling of 4-bromo-4¤-hexyloxybi-
phenyl and 4-pentyloxyphenylboronic acid.

The phase transition temperatures and the enthalpy changes
(¦H) of 3­5 were measured by differential scanning calorimetry
(DSC). In the heating process, compound 3 shows crystal phases
below 190.4 °C, a mesophase between 190.4 and 206.1 °C, and
an isotropic liquid phase above 206.1 °C (Figure 1).11 In the
cooling process, reverse phase transitions were observed. In
Figure 2, the texture of the mesophase observed with a
polarizing microscope is shown. Fan-shaped texture which is
characteristic of the smectic phase was observed. The smectic
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Figure 1. DSC thermograms of 3 (top) and 5 (bottom). (a)
Cooling curve, (b) second heating curve. Phase transition
temperatures (°C) and enthalpy changes (J g¹1, in parentheses)
are designated beside peaks.
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phase is reasonable because the enthalpy changes in the phase
transitions from the crystal phase to the mesophase (23.2 J g¹1)
and from the mesophase to the isotropic liquid phase (21.6 J g¹1)
are comparable. This means that in the mesophase, the crystal
structure is considerably disrupted, but the ordered structure still
remains.

In order to determine the type of the smectic phase, we
measured X-ray diffraction of 3 at 190 °C (Figure 3). The liquid
crystal phase exhibits sharp reflections at 2.98, 5.96, 9.28, and
12.44°. These reflections are due to the (001), (002), (003), and
(004) reflections of the smectic structure, respectively. From
these angles, the layer spacing was calculated to be 29.1¡,
which corresponds to the length of the molecular long axis.
Other reflections were not observed except for a broad halo at
ca. 10­30°. This means that the ordered structure is not present
inside each layer. Furthermore, the broken structure, which is
typical of the SmC phase,1c was not observed in the fan-shaped
texture in Figure 2. From these results, the smectic phase of 3 is
assigned to a SmA phase.

Compound 4 does not show a mesophase between the
crystal phase and the isotropic liquid phase.12 Compound 5
shows a mesophase between 230.3 and 249.4 °C in the heating
process, and reverse phase transitions were observed in the
cooling process (Figure 1). Observation of fan-shaped texture
with a polarizing microscope and X-ray diffraction showed that
the mesophase is a SmA phase.12 As the temperature range of
this SmA phase is by ca. 40 °C higher than that of 3, this SmA
phase fumes and becomes pale brown in a few minutes, while
the SmA phase of 3 remains unchanged. This is an advantage of
the pentylsilyl group as a flexible side chain. The relatively low
temperature range of the SmA phase of 3 may be ascribed to the
long silicon­hydrogen bond: two hydrogen atoms on the silicon

atom behave like “lateral substituents” and destabilize the SmA
phase.

The UV spectra of 3­5 are shown in Figure 4. In Table 1,
the wavelengths of the lowest energy absorption maxima and
the extinction coefficients are summarized. The lowest energy
absorption band of 3 shows a slight bathochromic shift
compared with that of 4 and has a little larger extinction
coefficient than that of 4. These changes are explained by the
cooperative effect of the ·­³ conjugation in the HOMO and the
·*­³* conjugation in the LUMO as reported in other silyl-
substituted aromatic compounds.6e Compound 5 shows the
wavelength and the extinction coefficient similar to those of 3.

Compound 3 shows intense blue fluorescence as shown in
Figure 5. Fluorescence spectra of 3­5 and their parameters are
shown in Figure 6 and Table 1. The fluorescence bands shift

Figure 2. Fan-shaped texture of 3 observed with a polarizing
microscope at 195.0 °C in the cooling process.
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Figure 3. X-ray diffraction pattern of 3 at 190 °C.
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Figure 4. UV spectra of 3­5 and p-terphenyl in hexane at
room temperature.

Table 1. Photophysical parameters of 3­5 and p-terphenyl in
hexane at room temperature

Compound
UV absorption Fluorescence

­max/nm ¾ ­max/nm Φf

3 293 38000 344, 360 0.83
4 287 35000 337, 351 0.72
5 292 38000 341, 358 0.69

p-terphenyl 275 33000 325, 339 0.77

(b)(a)

Figure 5. The light emission of 3 in hexane at room temper-
ature (a) and in a liquid crystal state at 195 °C (b). Excitation was
carried out with a low-pressure mercury lamp.
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bathochromically in the order of p-terphenyl, 4, and 3. The
wavelengths of the fluorescence maxima of 5 are almost the
same as those of 3. These results correspond to the absorption
bands of the UV spectra. When p-terphenyl is substituted by
alkoxy groups, the fluorescence quantum yield decreases in the
order of p-terphenyl (0.77), 4 (0.72), and 5 (0.69). On the other
hand, the fluorescence quantum yield of 3 (0.83) is higher than
that of p-terphenyl, 4, and 5. Therefore, the alkylsilyl group
improves the fluorescence quantum yield of p-terphenyl as
reported in other silyl-substituted aromatic compounds.6a,6d

From these results, the alkylsilyl group seems to be a favorable
flexible side chain for light-emitting liquid crystals. Unfortu-
nately, the fluorescence spectrum of 3 in a liquid crystal state
could not be observed because temperature should be kept at ca.
200 °C during measurement.

In summary, we synthesized a light-emitting organosilicon
liquid crystal 3. The pentylsilyl group was found to be able to be
used as a flexible side chain of a liquid crystal. Compound 3
shows intense blue fluorescence in hexane and in the liquid
crystal state. Further studies on the application of this light-
emitting liquid crystal are now in progress.
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Figure 6. Fluorescence spectra of 3­5 and p-terphenyl in
hexane at room temperature. The excitation wavelength is
281 nm.
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